

PM, Propositional Model, a Computational
Psycholinguistic Model of Language Comprehension

Based on a Relational Analysis of Written English

(Summary Paper)

Jerry T. Ball, PhD

www.DoubleRTheory.com
Jerry@DoubleRTheory.com

© 2003

Introduction

PM (Propositional Model) is a computational psycholinguistic model of written language
(English) comprehension. It consists of a propositional system of representation and a
processing mechanism for constructing propositional descriptions directly from input
text. There is no separate process for the construction of syntactic representations, and no
distinctly syntactic representations exist. In PM there is no distinction between syntactic
and semantic processing, or between syntactic and semantic representations. Nor is there
a clear distinction between grammar and lexicon.

PM’s system of representation is propositionally and linguistically based. Propositional
representations consist of linguistic descriptions of predicates (including predicate
modifiers) along with linguistic descriptions of their associated arguments. The main
predicate functions as the head of a propositional description. There are two basic types
of argument descriptions: (a) object argument descriptions, and (b) propositional
argument descriptions. Propositional argument descriptions are just propositional
descriptions that are embedded in higher level propositional descriptions. They give
propositional descriptions a recursive potential. Object argument descriptions are
descriptions of the objects that participate in propositional descriptions. Object
descriptions consist of terms which are base level non-relational elements and functions
which are relational elements that modify terms. Terms function as the heads of object
descriptions.

Propositional descriptions are perceptually based abstractions of linguistic input and they
represent linguistic aspects of structure and meaning. Propositional descriptions contain
no nonlinguistic entities. Propositional descriptions are associated with nonlinguistic
representations which are constructed in parallel with propositional descriptions during
processing. Nonlinguistic representations are perceptually based abstractions of
nonlinguistic input and they represent nonlinguistic aspects of structure and meaning.

The basic relationship between linguistic and nonlinguistic representations is one of
grounding. Nonlinguistic representations ground the sense and reference of related
linguistic representations. Nonlinguistic representations of prototypes and exemplars
(i.e., previously encountered instances) ground the sense of corresponding linguistic
representations, and nonlinguistic representations of current instances ground the
reference of corresponding linguistic representations. Linguistic representations may be
directly related to other linguistic representations, and may gain much of their meaning
from such associations, but linguistic representations are ultimately ground in
nonlinguistic representations:

Humans have a very general ability to recognize the similarities and to abstract away
from the differences between particular experiences. Humans make use of this ability in
the creation of mental representations corresponding to their experience. Based on this
ability and experience of language, humans construct representations which capture
knowledge of language. Such representations vary in their level of abstraction, some
capturing very general knowledge of language, and other capturing knowledge of specific
linguistic constructions. Once constructed, these mental representations or schemas are
available for use in subsequent language processing, with more specific and concrete
schemas providing more predictive power than less specific and more abstract schemas.

PM makes use of schemas for the representation of knowledge of language. In PM there
is an abstract schema of the form |obj pred obj| (pred is short for predicate and obj is
short for object description) which represents knowledge about the linear encoding,
number and type of arguments which are associated with bivalent or transitive predicates.
There is also likely to be a more concrete schema of the form |obj hit obj|, reflecting
specific knowledge about the transitive verb hit. And even more concrete schemas like
|obj hit the nail on the head| are possible. Thus, PM assumes the existence of schemas
at multiple levels of abstraction. The figure below is a tangled hierarchical diagram of
some possible schemas for the verb hit. Of interest to note is that a schema which
contains specific lexical items might be said to be part of the lexicon (assuming the
schema is addressable via the lexical item it contains), whereas a schema which does not
contain any specific lexical item might be said to be part of the grammar. But if abstract

Mental Box Real World

Linguistic Expression

Object, State
Or Event

Repn of Ling
Expression

Repn of Related
Ling Expressions sense

Repn of
Prototype

Repn of
Exemplar

Repn of
Instance

sense

reference

Linguistic

Nonlinguistic

sense

schemas like |obj pred obj| are directly associated with specific lexical items, this
distinction loses its force.

PM’s processing mechanism operates on the input text from left to right, activating
learned schemas which correspond to individual lexical items or larger chunks of text, as
it goes along. These schemas in turn establish expectations which both determine the
possible structures and drive the processing mechanism. In PM there is effectively no
overall grammar and no top down control mechanism—just the local preferences of
individual lexical items and larger linguistic units which must be integrated together in
the construction of a coherent representation for a piece of text.

|obj is hitting the books|
|obj hit the nail on the head|
|I hit obj|
|I hit the term|
|he is hitting obj|
|obj likes to hit obj|

|subj hit obj|

|subj verb obj|

|subj predicate|

|sentence|

|obj hit obj|

|obj pred obj|

|hitter hit hittee|

|agent hit patient|

|agent pred patient|

|proposition|

The Theoretical and Historical Basis of PM

From a linguistic perspective, PM’s representational and processing commitments are
most closely allied with the following linguistic approaches:

• Cognitive Linguistics (Johnson, 1987; Lakoff, 1988, 1987; Langacker, 1987,
1986)

• Case Grammar (Fillmore, 1977, 1971, 1968; Nilsen, 1973; Somers, 1987)
• Valency Grammar (Heringer, 1985; Somers, 1987)
• Functional Grammar (Dik, 1987b; Givon, 1989, 1984; Halliday, 1984)
• Traditional Grammar (Jackson, 1990; Jespersen, 1984, 1965; Quirk, Greenbaum,

Leech & Svartvik, 1985, 1982).

Within the framework of Transformational Grammar (Chomsky, 1965, 1957; Radford,
1981), Jackendoff (1983, 1978) has been influential, although in general the basic
assumptions of PM are not compatible with those of Transformational Grammar. The
basic assumptions of PM are more compatible with those of Government and Binding
Theory (Chomsky, 1995, 1988, 1982a, 1982b, 1981; Sells, 1985) than Transformational
Grammar, and the advent of Government and Binding Theory is seen as an improvement
over its predecessor. Government and Binding Theory is also in some ways more
compatible with PM than are Lexical Functional Grammar (Bresnan, 1982, 1978; Sells,
1985) and Generalized Phrase Structure Grammar (Gazdar, Klein, Pullum & Sag, 1985;
Sells, 1985). Lexical Functional Grammar and Generalized Phrase Structure Grammar
retain some of the undesirable features of Transformational Grammar (e.g., phrase
structure rules) that have been eliminated in Government and Binding Theory.

From a psychological perspective, PM is most compatible with psychological approaches
which focus on propositional systems of representation and process and which espouse
unified theories of cognition:

• ACT-R (Anderson & LeBiere, 1998; Anderson, 1993, 1983, 1976)
• Construction-Integration Model (Kintsch, 1998, 1988, 1977, 1974; Kintsch & van

Dijk, 1978)
• Miller, 1978; Miller & Johnson-Laird, 1976
• Mental Models (Johnson-Laird, 1983)
• Clark & Clark 1977 ; Clark & Haviland, 1977 ; Haviland & Clark, 1974
• CAPS (Just & Carpenter, 1987)

The research of Miller and Johnson-Laird (1976) and Miller (1978) has been especially
influential on the development of PM’s system of representation. The discourse
processing models put forward by Kintsch and van Dijk (1978) and Clark and Haviland
(1977) have influenced the development of PM’s processing mechanism. The
psychologically based models of Anderson (1993, 1983, 1976; Anderson & LeBiere
1998), Just and Carpenter (1987), and Kintsch (1998, 1988, 1977, 1974; Kintsch & van
Dijk 1978) are the most comprehension treatments of both representation and process

available. The most glaring omission in the research of Kintsch is the lack of a
processing mechanism for constructing propositional representations from input texts.
PM provides just such a mechanism.

From the perspective of Artificial Intelligence, PM is most indebted to the following:

• Preference Semantics (Wilks 1979, 1975a, 1975b, 1972)
• Conceptual Dependency Theory (Lytinen, 1986; Schank, 1975, 1972; Schank &

Abelson, 1977; Wilensky, 1986)
• Conceptual Structures (Sowa, 1984).
• SHRDLU (Winograd 1983, 1972).

Wilks’ Preference Semantics set the stage for the development of PM. Schank’s
Conceptual Dependency theory has provided numerous useful insights, although, the
exclusive use of extremely abstract schemas that it espouses is not considered a
reasonable model of language comprehension. Winograd’s thesis and program (1972) is
an impressive achievement and his shift towards a more cognitive orientation (1983)
precipitated a similar shift in the development of PM.

The Representation of Propositional and Object Descriptions

From a relational perspective, it is argued that the clause structure of written English has
two basic elements:

• Propositional Descriptions
• Object Descriptions

Propositional descriptions represent the predicate-argument structure of clauses. They
consist of a predicate, the head of the propositional description, and zero (in reduced
argument constructions) to three arguments. The predicate consists of a main predicate
which is typically a verb, adjective or preposition, associated predicate modifiers and
perhaps a distinguished predicate specifier (i.e. the first element of the predicate). The
arguments to a predicate are of two types: object descriptions and embedded
propositional descriptions. Embedded propositional descriptions give propositional
descriptions a recursive potential.

In total, nine basic propositional forms have been identified:

He went pred(obj) [went(he)]
He kissed me pred(obj,obj) [kissed(he,me)]
He gave me it pred(obj,obj,obj) [gave(he,me,it)]
Unfortunately, he went pred(prophead) [unfortunately([went(he)]head)]
He believes you like me pred(obj,prop) [believes(he,[like(you,me)])]
He kissed me by it pred(prophead,obj) [by(kissed(he,me)]head,it)]
He told me you like him pred(obj,obj,prop) [told(he,me,[like(you,him)])]
I like you and you like me pred(prophead,prophead)

[and([like(I,you)]head,[like(you,me)]head)]
He ate, I sang and she sat pred(prophead,prophead,prophead)
 [and([ate(he)]head,[sang(I)]head,[sat(she)]head)]

In addition, there are four forms of predicate modification:

I am sad pred{predhead}(obj) [am{sad}(I)]
He went over it pred{predhead}(obj,+obj) [over{went}(he,it)]
He hit and kicked it pred{predhead,predhead} [and{hit,kicked}(he,it)]
He hit, kicked and bit it pred{predhead,predhead,predhead}
 [and{hit,kicked,bit}(he,it)]

In terms of notation, pred is a predicate description, obj is an object description, and
prop is a propositional description. ()’s are used to circumscribe the arguments of the
predicate. In these abstract schemas, the surface order of the predicate relative to the
arguments is left unspecified, however, the order of the arguments is significant. The two
forms pred(obj,prop) and pred(prophead,obj) differ in this latter respect. All of the
basic propositional forms result in propositional descriptions when the predicate and
arguments are instantiated. []’s are used to circumscribe a complete propositional
description. ()’s are used to circumscribe a complete object description, however, the (
)’s around object descriptions will be dropped when the object description functions as an
argument in one of the basic forms. Thus, the propositional description [went(he)]
would be represented as [went((he))] if the inner ()’s had not been dropped. For
embedded propositional descriptions the []’s will not be dropped since the ()’s
surrounding the arguments of a predicate suggest that the arguments are object
descriptions and not propositional descriptions. For predicate modification, { }’s are used
to circumscribe the predicate being modified.

The basic propositional forms are annotated to reflect the head of the resulting form
whenever the main predicate of the form is not the head. There are four instances of
propositional modification and four instances of predicate modification where this is the
case.

Object descriptions represent the function-term structure of noun phrases. They consist
of a term which is the head of the object description, optional functional modifiers and an
optional functional specifier. This term is typically a noun, although lexical items which
are typically other parts of speech (e.g. adjective, present participle) may also be used as
terms. This term may be modified by one or more functions which correspond to
presupposed relations that are associated with the term. Functions may themselves be
modified by function modifiers (e.g. adverbs). Finally, an optional function specifier
which explicitly establishes the referential nature of the object description may occur.

Functions are the linguistically relational components of object descriptions and as such
are largely responsible for determining the relational structure of such descriptions. In
PM, functions (like predicates) can be classified in terms of the number and type of
arguments they take. There are three basic types of arguments to functions: terms, other

functions, and object descriptions. Further, it is assumed that functions take at most
two arguments—with the exception of conjunctions which can take (at least) three
arguments—and that the arguments to a function must be of the same type. Additionally,
it is assumed that the type of the function argument combination depends on the type of
the arguments such that an object description combines with a function and forms an
object description, a term combines with a function and forms either a complex term or
an object description, and a function combines with a function to form a function.
Finally, it is assumed that one or more of the arguments acts as the head of the resulting
function argument structure. Given these assumptions, the following functional types
have been identified:

Func<Termhead> => Term
Func<Termhead,Term> => Term
Func<Termhead,Termhead> => Term
Func<Termhead, Termhead,Termhead> => Term
Func-Mod{Funchead} => Func
Func-Mod{Funchead,Funchead} => Func
Func-Mod{Funchead,Funchead,Funchead} => Func
Func-Spec<Termhead> => Obj
Func(Objhead) => Obj
Func(Objhead,Obj) => Obj
Func(Objhead,Objhead) => Obj
Func(Objhead,Objhead,Objhead) => Obj

In this notation, func is a function, func-mod and func-spec are subtypes of function
corresponding to function modifiers and term specifiers, obj is an object description,
term is a term, and the subscript head marks the head of the resulting description. Terms
are further identified by bracketing them with <>’s. The arguments of a function which
are themselves functions are bracketed with { }’s. Arguments which are full object
descriptions are bracketed with ()’s.

Determiners perform a function for object descriptions similar to the function that the
auxiliary verbs perform for propositional descriptions. Both serve to complete the
description of which they form a part by providing specifications which serve to fix the
reference of the description. This correspondence provides a basis for generalizing about
the structure of propositional and object descriptions in a way similar to the
generalization put forward in X-bar Theory (see the description in Sells 1985). It
suggests the existence of three levels of representation: (1) a base level, (2) an
intermediate unspecified level above the base level, and (3) a fully specified level. For
propositional descriptions, the base level is the predicate, the intermediate level is the
unspecified propositional description, and the fully specified level is the specified
propositional description. For object descriptions, the base level is the term, the
intermediate level is the unspecified object description, and the fully specified level is the
fully specified object description.

The examples below explicate the possible forms:

Func<Termhead>Term old man

<old<man>head>
Func<Termhead,Term >Term can of beans

<of<can head,beans>>
Func<Termhead,Termhead>Term prince and princess

<and<prince head,princess head>>
Func<Termhead,Termhead,Termhead>Term

man, woman and child
<and<man head,woman head,child head>>

Func-Spec<Termhead>Obj the man
(the<man >head)

Func(Objhead)Obj all the men
(all(the<men >head))

Func(Objhead,Obj)Obj the man in the park
(in(the<man>head,the<park>))

Func(Objhead,Objhead)Obj the man and the woman
(and(the<man>head,the<woman>head))

Func(Objhead,Objhead,Objhead)Obj the man, the woman and the child
(and(the<man>head,the<woman>head,the<child>head))

Func-Mod{Funchead}Func very old …
very{oldhead}

Func-Mod{Funchead,Funchead}Func black and white …
and{blackhead,whitehead}

Func-Mod{Funchead,Funchead,Funchead}Func red, white and blue …
and{redhead,whitehead,bluehead}

The first four forms are subscripted with Term to indicate that the completed form has the
status of a term. The next five forms are subscripted with Obj to indicate that the
completed form has the status of an object description. The last three forms are
subscripted with Func to indicate that the completed form will have the status of a
function. The head of each form is also marked by the subscript head. Redundant <>’s
around terms are eliminate (e.g. <of<<can>head,<beans>>> => <of<canhead,beans>>).

Despite the fact that PM’s propositional and object representations are described in
relational terms, PM representations are actually very consistent with the more detailed
grammatical and functional treatments of Jespersen (1984, 1965) and Quirk, Greenbaum,
Leech and Svartvik (1985, 1972). This consistency makes it possible to extend PM to
handle grammatical details which are not currently modeled. For example, the more
detailed representational system developed in Jespersen (1984) can be added to PM with
only minor reworking. Further, the mapping from parts of speech and grammatical
categories to PM’s propositional categories is straightforward enough to consider the use
of on-line dictionaries to bootstrap the development of functional language processing
systems.

The Processing of Propositional and Object Descriptions

The processing mechanism operates on the input text from left to right, identifying lexical
units via the activation of associated schemas in long-term memory, and selecting from
among the activated schemas. The activation and selection of schemas corresponding to
the relational units in a piece of text is critical to the processing mechanism, since the
relational units determine how selected schemas can be integrated together in the short-
term memory buffers. The processing mechanism also makes use of general rules of
English word order as a guide to determining how to integrate various schemas. Schemas
which are consistent with these general rules of word order need not explicitly specify
that information. For example, English word order is such that the argument to a
function which takes a single argument typically occurs to the right of that function in the
input stream. Functions which follow this general rule can be represented by schemas
which do not explicitly specify the location of the argument relative to the function.
However, more specific schemas are likely to be associated with functions which do not
follow the general rule. Thus, the function ago is likely to have a schema associated with
it in which the argument is specified to occur before the function as in a week ago. The
use of general rules of word order in combination with explicitly marked exceptions to
the rules is consistent with the position of Pinker (2000).

In PM, function words (e.g. determiners) and prepositions are treated as relational lexical
items and they are important to the processing mechanism. For example, the occurrence
of a determiner establishes the context of an object description, whereas the occurrence of
an auxiliary verb establishes the context of a propositional description. Likewise, the
occurrence of a preposition marks the end of the previous propositional or object
description and sets up an expectation for the occurrence of a subsequent object
description. Thus, these often ignored sentence constituents are important markers for
the processing mechanism. That they are short words in English is a reflection of the
efficient encoding of these often occurring constituents, and not an indication of their
minor importance for understanding. Their omission in contexts like newspaper
headlines, often leads to difficulty in determining the meaning of those headlines.

The processing mechanism makes use of effective strategies during the processing of
input texts. For lexical items which evoke strong preferences to be used in specific ways,
those preferences can be immediately realized based solely on the prior context. For
lexical items which evince multiple different uses, subsequent context may also be
necessary to determine which use is relevant in the given context. The processing
mechanism does not make extensive use of backtracking, but to the extent that it does,
that backtracking essentially involves jumping back to the beginning of some chunk of
text and is not like the formalized backtracking of a computational system like Prolog.

One automatic and two control processes have been introduced above. They include (a)
an automatic spreading activation process, (b) a control process for selecting activated
schemas from long-term memory and placing them in short-term memory buffers, and (c)
a control process for integrating selected schemas in the short-term memory buffers. The
automatic process of spreading activation and the control process by which activated

schemas are selected and placed in short-term memory will not be discussed further.
Only the output of these two processes will be considered. Anderson (1983) and
Anderson and LeBiere (1998) present a treatment of these two processes which is largely
compatible with PM.

The remainder of this paper is concerned with a description of the process of integrating
selected schemas in the short-term memory buffers. That process can be described
algorithmically in terms of the individual processing steps required to integrate the
schemas which have been selected for further processing. We begin the discussion of
this process by walking through the steps involved in the processing of the following
English sentence:

 The boy likes the girl.

The processing of this sentence begins with the activation and selection of a schema
corresponding to the first lexical unit. The word the is identified and a schema which
reflects its status as a function which takes a term for and argument and forms an object
description is selected. The word order of English is such that the term that goes with a
function like the almost invariably occurs to the right of that function in the input text.
Thus, the preference is for the function to await the appearance of this term before
combining with it to form an object description. As a result of this preference, the
function the is retained in a short-term memory buffer with its argument uninstantiated
and the processing of this function is temporarily halted. The processing of the next
lexical unit begins. The word boy is identified and determined to be a term. Since the
function the is awaiting the occurrence of a term, it combines with the term boy to form
the object description (the<boy>). This object description is retained in a short-term
memory buffer for use in subsequent processing. The individual components of the
object description (e.g., the and boy) are not separately maintained in the short-term
memory buffer once they are combined, since it is assumed that set of short-term memory
buffers has too limited a capacity to retain such individual components and since the
separate maintenance of these components in short-term memory buffers would interfere
with the processing mechanism. In general, it will be assumed that none of the
components of propositional descriptions are separately maintained in memory once they
are combined, however, there are reasons for suggesting that the subject may represent an
exception to this assumption. For example, separately representing the subject in a short-
term memory buffer makes it more salient than the other arguments of a predicate and
provides one way of explaining the asymmetry in the status of subjects and objects in
English. The processing mechanism continues by identifying the next lexical unit. The
word likes is identified and is determined to be a predicate which takes two object
descriptions for arguments. The word order of English is such that the first object
description of predicates like likes typically occurs before the predicate in the input text.
This means that the first argument to the predicates likes should be available in a short-
term memory buffer for instantiation at the time the predicate is encountered. The
processing mechanism searches the short-term memory buffers for an object description,
identifies the object description the<boy> and instantiates it as the first argument of
likes, forming the partially complete propositional description likes(the<boy>,Obj)prop.

The order of search is based on the recency of processing of the schemas in the short-
term memory buffers, such that the set of short-term memory buffers function very much
like a stack. Thus, if there were two object descriptions separately available in short-term
memory buffers at the time the predicates likes was processed, the most recently
processed object description would be selected for instantiation as the first argument.
Object descriptions which are not separately available in short-term memory buffers (i.e.,
arguments which have already been instantiated into a relational structure), are typically
overlooked by the search mechanism. According to English word order, the second
argument of a predicate which takes two object descriptions typically occurs after it in the
input text. Therefore, the predicate must await the occurrence of the second object
description. The partially completed propositional description is retained in a short-term
memory buffer. The processing mechanism continues by identifying and processing the
next lexical unit. The word the is identified and its functional schema is retrieved from
memory. Since the predicate likes is expecting an object description and not a function,
the function the cannot be instantiated as the second argument of likes. And since the
term which the function the takes, is expected to occur to its right in the input text, this
function must likewise wait to be completed. The processing mechanism continues by
identifying the next lexical unit, girl, and determines it to be a term. Since the function
the is expecting a term, it combines with the term girl to form the object description
(the<girl>). This object description is in turn instantiated as the second argument of the
predicate likes, forming the propositional description [likes(the<boy>,the<girl>)]. At
the completion of processing of the input text, this propositional description is retained in
a short-term memory buffer for subsequent processing.

An abbreviated notation for representing the steps in that processing is introduced. The
first step involved in the processing of the preceding example is expressed in this notation
as:

 the => the<T1>obj

On the left hand side of the arrow is the lexical item the and on the right hand side is the
schema for the which is activated and selected for subsequent processing. In this
schema, the is identified as a function which takes a term for an argument and forms an
object description. At the time the schema is selected, the argument to the function is
uninstantiated. Uninstantiated arguments are represented as variables beginning with a
capital letter (e.g. T), which identifies the type of the variable, and ending in a single digit
(e.g., 1) which functions to distinguish the variable from other variables of the same type.
The possible types are T (term), F (function), PR (predicate), O (object description), and
P (propositional description). The <>’s around T1 also identify the type of T1 as a term.
()’s will be used to circumscribe object descriptions and the arguments of propostional
descriptions, []’s will be used to circumscribe propositional descriptions and { }’s will be
used to circumscribe the arguments of predicate and function modifiers. Since the
schema for the is not yet a fully specified object description, it is not circumscribed by (
)’s, instead the subscript obj marks the schema as ultimately forming and object
description. Functions which combine with terms to form complex terms will be
circumscribed with <>’s to distinguish them from object descriptions when they are fully

specified and subscripted with term when they are not. Partially completed propositional
descriptions will be subscripted with prop to reflect their fully specified type. Partially
completed function modifiers will be subscripted with func and partially completed
predicate modifiers will be subscripted with pred to reflect their fully specified type.

Continuing the processing leads to

 boy => <boy>
 the<T1>obj + <boy> => (the<boy>)

The left hand side need not always be a lexical item. It may also consist of a collection of
schemas which are integrated as shown on the right hand side. The latter processing step
above represents the instantiation of the term boy as the argument of the function the.
Note that until the term boy is instantiated into the function the, there is no object
description. Continuing with the processing gives:

 likes => likes(O1,O2)prop

followed by

 likes(O1,O2) prop + (the<boy>) => likes(the<boy>,O2) prop

Continuing to completion we have:

 the => the<T2> obj
 girl => <girl>
 the<T2> obj + <girl> => (the<girl>)
 likes(the<boy>,O2) prop + (the<girl>) => [likes(the<boy>,the<girl>)]

The final representation for the sentence is a propositional description consisting of the
predicate likes along with the two object descriptions (the<boy>) and (the<girl>) which
are the arguments of the predicate.

The Processing of Object Descriptions

The following object description includes a term, function, function modifier (i.e. adverb)
and function specifier and introduces a range of considerations in the processing of object
descriptions:

 The black robed judge.

In my preferred interpretation of this phrase, it is the robe and not the judge which is
black. The processing of the preferred interpretation for this phrase proceeds as follows:

 the => the<T1> obj

 black => black{F1}func
 robed => robed<T2> term
 black{F1} func + robed<T2> term => black{robed}<T2> term
 judge => <judge>
 black{robed}<T2> + <judge> => <black{robed}<judge>>
 the<T1> obj + <black{robed}<judge>> => (the<black{robed}<judge>>)

In the preferred interpretation of this expression, black functions as an adverb (i.e.
function modifier) rather than an adjective, since it modifies the adjective (or participial)
robed (which is a function) rather than the noun judge. In PM, adverbs—when they
occur as elements of object descriptions—are functions which take functions as their
argument. Of course, black normally prefers to be an adjective rather than an adverb and
it is unlikely that the processing of this expression is as straightforward as the example
shows. Rather, the occurrence of the word robed after black triggers the preference for
the adverbial use which must somehow replace the original preference. Thus, we might
modify the processing as follows:

 the => the<T1> obj
 black => black<Ta> term
 robed => <robed<T2> term
 black<Ta> term + robed<T2> term => black{F1} func + robed<T2> term

black{F1} func + robed<T2> term => black{robed}<T2> term
 judge => <judge>
 black{robed}<T2> term + <judge> => <black{robed}<judge>>
 the<T1> obj + <black{robed}<judge>> => (the<black{robed}<judge>>)

The adverbial status of black is an interesting consequence of the participial use of robed
which is derived from the noun robe. Thus, black would typically function as an
adjective in modifying robe as in

 The black robe.
 The robe is black.

However, since robed is itself functioning as a modifier in the black robed judge, black
takes on the adverbial role of modifying a modifier. Note that there is an alternative (if
dispreferred) reading of this expression in which black modifies judge and not robed. In
this dispreferred reading black retains its more typical use and the expression can be
processed as followed:

 the => the<T1> obj
 black => black<Ta> term
 robed => <robed<T2> term
 judge => <judge>
 robed<T2> term + <judge> => <robed<judge>>
 black<Ta> term + <robed<judge>> => <black<robed<judge>>>

 the<T1> obj + <black<robed<judge>>> => (the<black<robed<judge>>>)

In the resulting representation, the “robed judge” is “black”. Selection of this
dispreferred reading can be facilitated by punctuation as in

 The black, robed judge

where the comma serves to emphasize the dual modification of judge by black and
robed. And use of the conjunction and would make the dual modification even more
explicit

 The black and robed judge

although the conjunction of such disparate properties is unusual.

The Processing of Propositional Descriptions

As an example of the processing of propositional descriptions consider

 He walked slowly

in which the adverb slowly is assumed to be functioning as a predicate modifier
(Thomason & Stalnaker, 1973). This sentence can be processed as followed:

 he => (he)
 (he) + walked => walked(O1) prop
 slowly => slowly{PR1} pred
 walked(O1) prop + slowly{PR1} pred => slowly{walked}(O1) prop
 (he) + slowly{walked}(O1) prop => [slowly{walked}(he)]

Note that the instantiation of he as the argument of walked is delayed until after the
adverb slowly is processed. This avoids the need for the predicate modifier slowly to
intrude on the propositional description [walked(he)] which would be created if he were
immediately instantiated into walked. This is example of where delayed instantiation of
the subject avoids the creation of a structure that would otherwise have to be dismantled.

If the adverb slowly is fronted as in

 Slowly, he walked

and slowly is treated as a predicate modifier, it is more difficult to avoid creation of an
invalid structure. This may explain why fronted adverbs tend to be treated as sentential
modifiers. The sentence can be processed as follows:

 slowly => slowly{PR1} pred

 he => (he)
 (he) + walked => walked(O1) prop
 (he) + walked(O1) prop => [walked(he)]
 slowly{PR1}pred + [walked(he)] => [slowly{walked}(he)]

In the last step the predicate modifier slowly must be integrated into a complete
propositional description which is atypical for the processing mechanism. An alternative
last step is to convert slowly to a sentential adverb leading to:

 slowly{PR1}pred + [walked(he)] => slowly(P1) + [walked(he)]

slowly(P1)prop + [walked(he)] => [slowly([walked(he)])]

Chafe (1970) argues that the fronting of adverbs like slowly has just this effect of
converting them into sentential modifiers. One possible difference between he walked
slowly and slowly, he walked is the suggestion that in the latter sentence that the act of
walking was slow to start. This distinction is quite subtle. Indeed, I had overlooked it
myself until it was pointed out to me (K. Paap, Oct. 1991, personal communication).
While the position of the predicate slowly has only a subtle effect on meaning in the
above sentences, the positional effect is more prominent in sentences containing multiple
predicates. Consider

 He stopped walking slowly
 Slowly, he stopped walking.

The fronting of slowly results in a preferred interpretation of the second sentence which
differs substantially from the first sentence. The processing of the first sentence can
proceed as follows:

 he => (he)
 stopped => stopped??
 stopped + walking => stopped{PR1} + walking(O1)
 walking(O1) + slowly => walking(O1) + slowly{PR2} pred
 walking(O1) prop + slowly{PR2} pred => slowly{walking}(O1) prop
 stopped{PR1} + slowly{walking}(O1) prop =>

stopped{slowly{walking}}(O1) prop
(he) + stopped{slowly{walking}}(O1) prop =>

[stopped{slowly{walking}}(he)]

In the resulting representation stopped modifies slowly{walking} and not just walking.
The second sentence can be processed as:

 slowly => slowly{PR1}

he => (he)
 stopped => stopped??
 stopped + walking => stopped{PR1} + walking(O1)
 stopped{PR1} + walking(O1) prop => stopped{walking}(O1) prop

(he) + stopped{walking}(O1) prop => [stopped{walking}(he)]
slowly{PR1} + [stopped{walking}(he)] =>

slowly(P1) prop + [stopped{walking}(he)]
slowly(P1) prop + [stopped{walking}(he)] => [slowly([stopped{walking}(he)])]

In this representation slowly modifies the propositional description
[stopped{walking}(he)] giving a clearly different meaning.

Auxiliary verbs, modal auxiliaries and negatives are all typically predicate modifiers.
Consider

 He could not have been walking slowly

which can be processed as follows:

 he => (he)
 could => could{PR1}pred
 not => not{PR2}pred
 have => have{PR3} pred
 been => been{PR4}pred
 been{PR4}pred + walking => been{PR4}pred + walking(O1) prop
 slowly => slowly{PR5}pred
 walking(O1) prop + slowly{PR5} => slowly{walking}(O1) prop
 been{PR4}pred + slowly{walking}(O1) prop => been{slowly{walking}}(O1) prop
 have{PR3 pred + been{slowly{walking}}(O1) prop =>

have{been{slowly{walking}}}(O1) prop
not{PR2}pred + have{been{slowly{walking}}}(O1) prop =>

not{have{been{slowly{walking}}}}(O1) prop

 could{PR1}pred + not{have{been{slowly{walking}}}}(O1) prop =>
could{not{have{been{slowly{walking}}}}}(O1) prop

 (he) + could{not{have{been{slowly{walking}}}}}(O1) prop =>
[could{not{have{been{slowly{walking}}}}}(he)]

The need to stack so many predicate modifiers could exceed the capacity of the short-
term memory buffers. It may be that there is a mechanism for combining predicate
modifiers to avoid this stacking. Assuming such a mechanism (at least for predicate
modifiers that occur before the main predicate), processing can proceed as follows:

 he => (he)
 could => could{PR1}pred
 not => not{PR2}pred

 could{PR1}pred + not{PR2}pred => could{not{PR2}} pred
 have => have{PR3} pred
 could{not{PR2}} pred + have{PR3} pred => could{not{have{PR3}}} pred

been => been{PR4}pred

could{not{have{PR3}}} pred + been{PR4}pred =>
could{not{have{been{PR3}}}} pred

 could{not{have{been{PR3}}}} pred + walking =>
could{not{have{been{PR3}}}} pred + walking(O1) prop

 slowly => slowly{PR5}pred
 walking(O1) prop + slowly{PR5} => slowly{walking}(O1) prop
 could{not{have{been{PR3}}}} pred + slowly{walking}(O1) prop =>
 could{not{have{been{slowly{walking}}}}}(O1) prop

could{not{have{been{slowly{walking}}}}}(O1) prop + (he) =>
 [could{not{have{been{slowly{walking}}}}}(he)]

On my preferred reading of this sentence slowly is within the scope of the negative not.
That is, what is negated is walking slowly and not just walking. Had the main predicate
walking been integrated with the negative not before being integrated with slowly, the
result would be a dispreferred reading:

 [slowly{could{not{have{been{walking}}}}}(he)]

Since negation is not factored out in PM as it is in the predicate calculus, negation will
interact with sentential and predicate modification in interesting ways. Consider

 He did not stop walking slowly
 Slowly, he did not stop walking.

The latter sentence is somewhat difficult to interpret since it is not clear what it means to
not stop walking in a slow manner. However, the first sentence has a clear interpretation
(i.e. “it is not the case that he stopped walking slowly”) which can be represented by

 [did{not{stop{slowly{walking}}}}(he)]

As a final example of the processing of sentences containing multiple predicate and
propositional modifiers, consider

 Unfortunately, he did not stop walking slowly.

This sentence contains a sentential modifier unfortunately which must finally be
integrated with the rest of the sentence. A shortened version of the processing is shown
below:

 unfortunately => unfortunately(P1) prop
 he did not stop walking slowly => [did{not{stop{slowly{walking}}}}(he)]

unfortunately(P1) prop + [did{not{stop{slowly{walking}}}}(he)] =>
 [unfortunately([did{not{stop{slowly{walking}}}}(he)])]

In the processing of predicate modifiers, PM adheres to the Main Predicate Proximity
Principle. This principle says that the order of occurrence of predicate and propositional
modifiers determines their scope relative to each other and to the main predicate—for
predicates occurring on the same side of the main predicate. According to this principle,
it is not possible (or is at least highly dispreferred in the unmarked case) for the predicate
not to take on a wider scope than the predicate did or the predicate unfortunately in this
example. This principle is discussed in detail in Ball (forthcoming). Besides
representational considerations, the processing mechanism provides additional support
for this principle, since the Main Predicate Proximity Principle follows from the
assumption that the elements in short-term memory buffers are ordered in terms of the
recency of processing. That is, since predicates closer to the main predicate and to its left
(i.e. prior to it) will have been processed more recently than predicates that are further
from the main predicate and to its left, their arguments will be instantiated first when
those arguments become available and predicates closer to the main predicate will have
smaller scope as a result. The relative scoping of predicates on differing sides of the
main predicate is not determined by this principle, although it appears that predicate
adverbs to the right of the main predicate tend to have smaller scope than auxiliaries,
modals and negatives to the left, and sentential adverbs tend to have larger scope than
these same elements regardless of the side.

We can consider the effect on meaning of the position of the word slowly. Consider

 Slowly, he stopped walking
 He slowly stopped walking
 He stopped slowly walking
 He stopped walking slowly.

In the first sentence, slowly is likely functioning as a propositional modifier since it
occurs outside the propositional description he stopped walking leading to:

 [slowly([stopped{walking}(he)])]

In the second sentence, slowly occurs within the subject argument and is likely
functioning as a predicate modifier leading to:

 [slowly{stopped{walking}}(he)]

In the third sentence, the location of slowly suggest two possible structures depending on
which verb it modifies:

 [slowly{stopped}{walking}(he)] (he stopped slowly…walking)
 [stopped{slowly{walking}(he)] (he stopped…slowly walking)

In the fourth sentence, slowly prefers to modify walking leading to:

 [stopped{slowly{walking}}(he)]

However, with emphasis this can be changed to

 [slowly([stopped{walking}(he)])] (he stopped walking…slowly)

Low Level Semantic Influence

Semantic information that is not currently modeled in PM is assumed to play an
important role in resolving certain types of ambiguities (e.g. prepositional phrase
attachment, resolution of verb object argument preferences). This is an open area of
research, but Latent Semantic Analysis (LSA) techniques (Landauer & Dumais, 1997;
Kintsch, 1998) offer prospects for providing the kind of low level associations between
lexical items needed to resolve such amibiguities. On the other hand, adequate
mechanisms for the processing of corresponding nonlinguistic representations are not yet
available and this remains a gap in PM. Nonetheless, it is assumed that a reasonable level
of performance in language understanding can be achieved with available techniques.

Bibliography

Anderson, J. R. (1976). Language, Memory and Thought. Hillsdale, NJ: LEA.

Anderson, J. R. (1983). The Architecture of Cognition. Cambridge, MA: Harvard

University Press.

Anderson, J. R. (1993). Rules of the Mind. Hillsdale, NJ: LEA.

Anderson, J. R. & C. LeBiere (1998). The Atomic Components of Thought. Hillsdale,

NJ: LEA.

Ball, J. (forthcoming). PM, Propositional Model, a Computational Psycholinguitic Model

of Language Comprehension Based on a Relational Analysis of Written English.

Bresnan, J. (ed.) (1982). The Mental Representation of Grammatical Relations.

Cambridge, MA: The MIT Press.

Bresnan, J. (1978). “A Realistic Transformational Grammar.” In Linguistic Theory and

Psychological Reality. Edited by M. Halle, J. Bresnan & G. A. Miller.
Cambridge, MA: The MIT Press.

Chafe, W. (1970). Meaning and the Structure of Language. Chicago: University of

Chicago Press.

Chomsky, N. (1995). The Minimalist Program. Cambridge, MA: The MIT Press.

Chomsky, N. (1988). Language and problems of knowledge: the Managua lectures.

Cambridge, MA: The MIT Press.

Chomsky, N. (1982a). “On the Representation of Form and Function.” In Perspectives

on Mental Representation. Edited by J. Mehler, E. Walker & M. Garrett.
Hillsdale, NJ: LEA.

Chomsky, N. (1982b). Some Concepts and Consequences of the Theory of Government

and Binding. Cambridge, MA: The MIT Press.

Chomsky, N. (1981). Lectures on Government and Binding. Dordrecht-Holland: Foris.

Chomsky, N. (1970). “Remarks on nominalization.” In Readings in Transformational

Grammar. Edited by R. Jacobs & P. Rosenbaum. Boston: Ginn.

Chomsky, N. (1965). Aspects of the Theory of Syntax. Cambridge, MA: The MIT Press.

Chomsky, N. (1957). Syntactic Structures. The Hague: Mouton.

Clark, H. (1983). “Making sense of nonce sense.” In The Process of Language

Understanding. Edited by G. Flores d’Arcais & R. Jarvella. NY: John Wiley.

Clark, H. & S. Haviland (1977). “Comprehension and the Given-New Contract.” In

Discourse Production and Comprehension, Volume 1, pp. 1-39. Edited by R.
Freedle. Norwood, NJ: Ablex.

Dik, S. (1987b). “Some Principles of Functional Grammar.” In Functionalism in

Linguistics pp. 81-100. Edited by R. Dirven & V. Fried. Philadelphia: John
Benjamin.

Fillmore, C. (1968). “The case for case.” In Universals in Linguistic Theory. Edited by

E. Bach & R. Harms. Chicago: Holt, Rinehart and Winston.

Fillmore, C. (1971). “Some Problems for Case Grammar.” In Monograph Series on

Language and Linguistics – 22nd Annual Roundtable. Edited by R. O’Brien.
Washington, DC: Georgetown University School of Language and Linguistics.

Fillmore, C. (1977). “The Case for Case Reopened.” In Syntax and Semantics, Volume

8. Edited by P. Cole. NY: Academic Press.

Gazdar, G. E. Klein, G. Pullum & I. Sag (1985). Generalized Phrase Structure

Grammar. Cambridge, MA: Harvard University Press.

Givon, T. (1984). Syntax: a Functional-Typological Introduction. Amsterdam: John

Benjamins Publishing Company.

Givon, T. (1989). Mind, Code and Context. Hillsdale, NJ: LEA.

Halliday, M. (1984). An Introduction to Functional Grammar. Cambridge, MA:

Harvard University Press.

Haviland, S. & H. Clark (1974). “What’s new? Acquiring new information as a process

in comprehension.” Journal of Verbal Learning and Verbal Behavior, 13.

Heringer, H, (1985). “The Verb and its Semantic Power: Association as a Basis for

Valence Theory.” Journal of Semantics, Volume 4, pp. 79-99.

Jackendoff, R. (1978). “Grammar as Evidence for Conceptual Structure.” In Linguistic

Theory and Psychological Reality. Edited by M. Halle, J. Bresnan, & G. A.
Miller. Cambridge, MA: The MIT Press.

Jackendoff, R. (1983). Semantics and Cognition. Cambridge, MA: The MIT Press.

Jackson, H. (1990). Grammar and Meaning: a Semantic Approach to English Grammar.
NY: Longman.

Jespersen, O. (1965). The Philosophy of Grammar. NY: W. W. Norton & Company.

Jespersen, O. (1984). Analytic Syntax. Chicago: The University of Chicago Press.

Johnson, M. (1987). The Body in the Mind. Chicago: The University of Chicago Press.

Johnson-Laird, P. (1983). Mental Models. Cambridge, MA: Harvard University Press.

Just, M. & P. Carpenter (1987). The Psychology of Reading and Language

Comprehension. Boston, MA: Allyn and Bacon.

Kintsch, W. (1974). The Representation of Meaning in Memory. Hillsdale, NJ: LEA.

Kintsch, W. (1977). Memory and Cognition. NY: John Wiley & Sons.

Kintsch, W. (1988). “The Role of Knowledge in Discourse Comprehension: a

Construction-Integration Model.” Psychological Review, 95, pp. 163-182.

Kintsch, W. (1998). Comprehension, a Paradigm for C ognition. NY: Cambridge

University Press.

Kintsch, W. & T. van Dijk (1978). “Toward a Model of Text Comprehension and

Production.” Psychological Review, 85, pp. 363-394.

Lakoff, G. (1987). Women, Fire and Dangerous Things. Chicago: The University of

Chicago Press.

Lakoff, G. (1988). “Cognitive Semantics.” In Meaning and Mental Representation.

Edited by U. Eco, M. Santambrogio & P. Violi. Indianapolis: Indiana University
Press.

Langacker, R. (1986). “An Introduction to Cognitive Grammar.” Cognitive Science, 10,

pp. 1-40.

Langacker, R. (1987). Foundations of Cognitive Grammar, Volume 1. Stanford, CA:

Stanford University Press.

Landauer, T. & S. Dumais (1996). “A solution to Plato’s problem: The Latent Semantic

Analysis theory of the acquisition, induction, and representation of knowledge.
Psychological Review, 104, pp. 211-240.

 Lytinen, A. (1986). “Dynamically combining syntax and semantics in natural language

processing.” In Proceedings AAAI 1986.

Miller, G. A. (1978). “Semantic Relations among Words.” In Linguistic Theory and

Psychological Reality. Edited by M. Halle, J. Bresnan & G. A. Miller.
Cambridge, MA: The MIT Press.

Miller, G. A., & P. Johnson-Laird (1976). Language and Perception. Cambridge: MA:

Harvard University Press.

Pinker, S. (2000). Words and Rules, the Ingredients of Language. NY: HarperCollins.

Quirk, R., S. Greenbaum, G. Leech, & J. Svartvik (1985). A Comprehensive Grammar of

the English Language. London: Longman.

Quirk, R., S. Greenbaum, G. Leech, & J. Svartvik (1972). A Grammar of Contemporary

English. London: Longman.

Radford, A. (1981). Transformational Syntax. NY: Cambridge University Press.

Schank, R. (1972). “Conceptual Dependency.” Cognitive Psychology, pp. 82-123.

Schank, R. (1975). Conceptual Information Processing. Amsterdam: North Holland.

Schank, R., & R. Abelson (1977). Scripts, Plans, Goals and Understanding. Hillsdale,

NJ: LEA.

Sells, P. (1985). Lectures on Contemporary Syntactic Theories. Chicago: University of

Chicago Press.

Somers, H. (1987). Valency and Case in Computational Linguistics. Edinburgh:

Edinburgh University Press.

Sowa, J. (1984). Conceptual Structures: Information Processing in Mind and Machine.

Reading, MA: Addison-Wesley Publishing Company.

Thomason, R., & R. Stalnaker (1973). “A Semantic Theory of Adverbs.” Linguistic

Inquiry, 4, pp. 195-220.

Wilensky, R. (1986). “Some Problems and Proposals for Knowledge Representation.”

Report No. UCB/CSD 86/294. Computer Science Division (EECS), University of
California, Berkeley.

Wilks, Y. (1972). Grammar, Meaning and the Machine Analysis of Language. London:

Routledge & Kegan Paul.

Wilks, Y. (1973). “An Artificial Intelligence Approach to Machine Translation.” In
Computer Models of Thought and Language. Edited by R. Schank and K. Colby.
San Francisco: Freeman.

Wilks, Y. (1975a). “Preference Semantics.” In Formal Semantics. Edited by E. Keenan.

NY: Cambridge University Press.

Wilks, Y. (1975b). “An Intelligent Analyzer and Understander of English.”

Communications of the ACM, 18, pp. 264-274.

Wilks, Y. (1979). “Frames, Semantics and Novelty.” In Frame Conceptions and Text

Understanding. Edited by D. Metzing. Berlin: de Gruyter.

Winograd, T. (1972). Understanding Natural Language. NY: Academic Press.

Winograd, T. (1983). Language as a Cognitive Process: Syntax. Reading, MA:

Addison-Wesley.

